3.32.36 \(\int \frac {(a+b x)^m (c+d x)^{3-m}}{(e+f x)^3} \, dx\) [3136]

Optimal. Leaf size=453 \[ -\frac {3 d^3 (d e-c f) (a+b x)^{1+m} (c+d x)^{-m}}{(b c-a d) f^4 m}-\frac {(d e-c f)^3 (a+b x)^{1+m} (c+d x)^{-m}}{2 f^3 (b e-a f) (e+f x)^2}+\frac {(d e-c f)^2 (b (5 d e+c f (1-m))-a d f (6-m)) (a+b x)^{1+m} (c+d x)^{-m}}{2 f^3 (b e-a f)^2 (e+f x)}+\frac {(d e-c f) \left (2 a b d f (3-m) (2 d e-c f m)-b^2 \left (6 d^2 e^2-4 c d e f m-c^2 f^2 (1-m) m\right )-a^2 d^2 f^2 \left (6-5 m+m^2\right )\right ) (a+b x)^m (c+d x)^{-m} \, _2F_1\left (1,-m;1-m;\frac {(b e-a f) (c+d x)}{(d e-c f) (a+b x)}\right )}{2 f^4 (b e-a f)^2 m}+\frac {d^3 (b (3 d e-c f (3-m))-a d f m) (a+b x)^{1+m} (c+d x)^{-m} \left (\frac {b (c+d x)}{b c-a d}\right )^m \, _2F_1\left (m,1+m;2+m;-\frac {d (a+b x)}{b c-a d}\right )}{b (b c-a d) f^4 m (1+m)} \]

[Out]

-3*d^3*(-c*f+d*e)*(b*x+a)^(1+m)/(-a*d+b*c)/f^4/m/((d*x+c)^m)-1/2*(-c*f+d*e)^3*(b*x+a)^(1+m)/f^3/(-a*f+b*e)/((d
*x+c)^m)/(f*x+e)^2+1/2*(-c*f+d*e)^2*(b*(5*d*e+c*f*(1-m))-a*d*f*(6-m))*(b*x+a)^(1+m)/f^3/(-a*f+b*e)^2/((d*x+c)^
m)/(f*x+e)+1/2*(-c*f+d*e)*(2*a*b*d*f*(3-m)*(-c*f*m+2*d*e)-b^2*(6*d^2*e^2-4*c*d*e*f*m-c^2*f^2*(1-m)*m)-a^2*d^2*
f^2*(m^2-5*m+6))*(b*x+a)^m*hypergeom([1, -m],[1-m],(-a*f+b*e)*(d*x+c)/(-c*f+d*e)/(b*x+a))/f^4/(-a*f+b*e)^2/m/(
(d*x+c)^m)+d^3*(b*(3*d*e-c*f*(3-m))-a*d*f*m)*(b*x+a)^(1+m)*(b*(d*x+c)/(-a*d+b*c))^m*hypergeom([m, 1+m],[2+m],-
d*(b*x+a)/(-a*d+b*c))/b/(-a*d+b*c)/f^4/m/(1+m)/((d*x+c)^m)

________________________________________________________________________________________

Rubi [A]
time = 0.53, antiderivative size = 451, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {131, 80, 72, 71, 1627, 156, 12, 133} \begin {gather*} \frac {(a+b x)^m (d e-c f) (c+d x)^{-m} \left (-a^2 d^2 f^2 \left (m^2-5 m+6\right )+2 a b d f (3-m) (2 d e-c f m)-\left (b^2 \left (-c^2 f^2 (1-m) m-4 c d e f m+6 d^2 e^2\right )\right )\right ) \, _2F_1\left (1,-m;1-m;\frac {(b e-a f) (c+d x)}{(d e-c f) (a+b x)}\right )}{2 f^4 m (b e-a f)^2}+\frac {d^3 (a+b x)^{m+1} (c+d x)^{-m} \left (\frac {b (c+d x)}{b c-a d}\right )^m (-a d f m-b c f (3-m)+3 b d e) \, _2F_1\left (m,m+1;m+2;-\frac {d (a+b x)}{b c-a d}\right )}{b f^4 m (m+1) (b c-a d)}-\frac {3 d^3 (a+b x)^{m+1} (d e-c f) (c+d x)^{-m}}{f^4 m (b c-a d)}+\frac {(a+b x)^{m+1} (d e-c f)^2 (c+d x)^{-m} (-a d f (6-m)+b c f (1-m)+5 b d e)}{2 f^3 (e+f x) (b e-a f)^2}-\frac {(a+b x)^{m+1} (d e-c f)^3 (c+d x)^{-m}}{2 f^3 (e+f x)^2 (b e-a f)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b*x)^m*(c + d*x)^(3 - m))/(e + f*x)^3,x]

[Out]

(-3*d^3*(d*e - c*f)*(a + b*x)^(1 + m))/((b*c - a*d)*f^4*m*(c + d*x)^m) - ((d*e - c*f)^3*(a + b*x)^(1 + m))/(2*
f^3*(b*e - a*f)*(c + d*x)^m*(e + f*x)^2) + ((d*e - c*f)^2*(5*b*d*e + b*c*f*(1 - m) - a*d*f*(6 - m))*(a + b*x)^
(1 + m))/(2*f^3*(b*e - a*f)^2*(c + d*x)^m*(e + f*x)) + ((d*e - c*f)*(2*a*b*d*f*(3 - m)*(2*d*e - c*f*m) - b^2*(
6*d^2*e^2 - 4*c*d*e*f*m - c^2*f^2*(1 - m)*m) - a^2*d^2*f^2*(6 - 5*m + m^2))*(a + b*x)^m*Hypergeometric2F1[1, -
m, 1 - m, ((b*e - a*f)*(c + d*x))/((d*e - c*f)*(a + b*x))])/(2*f^4*(b*e - a*f)^2*m*(c + d*x)^m) + (d^3*(3*b*d*
e - b*c*f*(3 - m) - a*d*f*m)*(a + b*x)^(1 + m)*((b*(c + d*x))/(b*c - a*d))^m*Hypergeometric2F1[m, 1 + m, 2 + m
, -((d*(a + b*x))/(b*c - a*d))])/(b*(b*c - a*d)*f^4*m*(1 + m)*(c + d*x)^m)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 71

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c
 - a*d))^n))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-d/(b*c - a*d), 0]))

Rule 72

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]), Int[(a + b*x)^m*Simp[b*(c/(b*c - a*d)) + b*d*(x/(b*c -
a*d)), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^Simplify[p + 1], x], x] /; FreeQ[{a, b, c
, d, e, f, n, p}, x] &&  !RationalQ[p] && SumSimplerQ[p, 1]

Rule 131

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[f^(p -
1)/d^p, Int[(a + b*x)^m*((d*e*p - c*f*(p - 1) + d*f*x)/(c + d*x)^(m + 1)), x], x] + Dist[f^(p - 1), Int[(a + b
*x)^m*((e + f*x)^p/(c + d*x)^(m + 1))*ExpandToSum[f^(-p + 1)*(c + d*x)^(-p + 1) - (d*e*p - c*f*(p - 1) + d*f*x
)/(d^p*(e + f*x)^p), x], x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[m + n + p, 0] && ILtQ[p, 0] && (L
tQ[m, 0] || SumSimplerQ[m, 1] ||  !(LtQ[n, 0] || SumSimplerQ[n, 1]))

Rule 133

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[(b*c - a
*d)^n*((a + b*x)^(m + 1)/((m + 1)*(b*e - a*f)^(n + 1)*(e + f*x)^(m + 1)))*Hypergeometric2F1[m + 1, -n, m + 2,
(-(d*e - c*f))*((a + b*x)/((b*c - a*d)*(e + f*x)))], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[m + n + p
 + 2, 0] && ILtQ[n, 0] && (SumSimplerQ[m, 1] ||  !SumSimplerQ[p, 1]) &&  !ILtQ[m, 0]

Rule 156

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f
))), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]

Rule 1627

Int[(Px_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> With[{
Qx = PolynomialQuotient[Px, a + b*x, x], R = PolynomialRemainder[Px, a + b*x, x]}, Simp[b*R*(a + b*x)^(m + 1)*
(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e
 - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*ExpandToSum[(m + 1)*(b*c - a*d)*(b*e - a*f)*Qx + a*d*f
*R*(m + 1) - b*R*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*R*(m + n + p + 3)*x, x], x], x]] /; FreeQ[{a, b,
c, d, e, f, n, p}, x] && PolyQ[Px, x] && ILtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {(a+b x)^m (c+d x)^{3-m}}{(e+f x)^3} \, dx &=\frac {\left ((b c-a d)^3 (c+d x)^{-m} \left (\frac {b (c+d x)}{b c-a d}\right )^m\right ) \int \frac {(a+b x)^m \left (\frac {b c}{b c-a d}+\frac {b d x}{b c-a d}\right )^{3-m}}{(e+f x)^3} \, dx}{b^3}\\ &=\frac {(b c-a d)^3 (a+b x)^{1+m} (c+d x)^{-m} \left (\frac {b (c+d x)}{b c-a d}\right )^m F_1\left (1+m;-3+m,3;2+m;-\frac {d (a+b x)}{b c-a d},-\frac {f (a+b x)}{b e-a f}\right )}{b (b e-a f)^3 (1+m)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 6 vs. order 5 in optimal.
time = 0.37, size = 111, normalized size = 0.25 \begin {gather*} \frac {(b c-a d)^3 (a+b x)^{1+m} (c+d x)^{-m} \left (\frac {b (c+d x)}{b c-a d}\right )^m F_1\left (1+m;-3+m,3;2+m;\frac {d (a+b x)}{-b c+a d},\frac {f (a+b x)}{-b e+a f}\right )}{b (b e-a f)^3 (1+m)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x)^m*(c + d*x)^(3 - m))/(e + f*x)^3,x]

[Out]

((b*c - a*d)^3*(a + b*x)^(1 + m)*((b*(c + d*x))/(b*c - a*d))^m*AppellF1[1 + m, -3 + m, 3, 2 + m, (d*(a + b*x))
/(-(b*c) + a*d), (f*(a + b*x))/(-(b*e) + a*f)])/(b*(b*e - a*f)^3*(1 + m)*(c + d*x)^m)

________________________________________________________________________________________

Maple [F]
time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {\left (b x +a \right )^{m} \left (d x +c \right )^{3-m}}{\left (f x +e \right )^{3}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^m*(d*x+c)^(3-m)/(f*x+e)^3,x)

[Out]

int((b*x+a)^m*(d*x+c)^(3-m)/(f*x+e)^3,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^m*(d*x+c)^(3-m)/(f*x+e)^3,x, algorithm="maxima")

[Out]

integrate((b*x + a)^m*(d*x + c)^(-m + 3)/(f*x + e)^3, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^m*(d*x+c)^(3-m)/(f*x+e)^3,x, algorithm="fricas")

[Out]

integral((b*x + a)^m*(d*x + c)^(-m + 3)/(f^3*x^3 + 3*f^2*x^2*e + 3*f*x*e^2 + e^3), x)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**m*(d*x+c)**(3-m)/(f*x+e)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^m*(d*x+c)^(3-m)/(f*x+e)^3,x, algorithm="giac")

[Out]

integrate((b*x + a)^m*(d*x + c)^(-m + 3)/(f*x + e)^3, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+b\,x\right )}^m\,{\left (c+d\,x\right )}^{3-m}}{{\left (e+f\,x\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*x)^m*(c + d*x)^(3 - m))/(e + f*x)^3,x)

[Out]

int(((a + b*x)^m*(c + d*x)^(3 - m))/(e + f*x)^3, x)

________________________________________________________________________________________